MakeItFrom.com
Menu (ESC)

EN 1.4611 Stainless Steel vs. C68700 Brass

EN 1.4611 stainless steel belongs to the iron alloys classification, while C68700 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4611 stainless steel and the bottom bar is C68700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 78
41
Tensile Strength: Ultimate (UTS), MPa 530
390
Tensile Strength: Yield (Proof), MPa 280
140

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 970
160
Melting Completion (Liquidus), °C 1440
970
Melting Onset (Solidus), °C 1390
930
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 21
100
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
23
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
25

Otherwise Unclassified Properties

Base Metal Price, % relative 11
26
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.5
2.8
Embodied Energy, MJ/kg 36
46
Embodied Water, L/kg 140
340

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 190
90
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19
13
Strength to Weight: Bending, points 19
14
Thermal Diffusivity, mm2/s 5.7
30
Thermal Shock Resistance, points 18
13

Alloy Composition

Aluminum (Al), % 0 to 0.050
1.8 to 2.5
Arsenic (As), % 0
0.020 to 0.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0 to 0.5
76 to 79
Iron (Fe), % 73.3 to 80.8
0 to 0.060
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0.2 to 1.0
0
Zinc (Zn), % 0
17.8 to 22.2
Residuals, % 0
0 to 0.5