MakeItFrom.com
Menu (ESC)

EN 1.4612 Stainless Steel vs. AWS ER80S-B3L

Both EN 1.4612 stainless steel and AWS ER80S-B3L are iron alloys. They have 77% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is EN 1.4612 stainless steel and the bottom bar is AWS ER80S-B3L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11
19
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
74
Tensile Strength: Ultimate (UTS), MPa 1690 to 1850
630
Tensile Strength: Yield (Proof), MPa 1570 to 1730
530

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 11
13

Otherwise Unclassified Properties

Base Metal Price, % relative 16
4.1
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.6
1.8
Embodied Energy, MJ/kg 50
23
Embodied Water, L/kg 140
60

Common Calculations

PREN (Pitting Resistance) 19
6.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 210
120
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 60 to 65
22
Strength to Weight: Bending, points 40 to 43
21
Thermal Shock Resistance, points 58 to 63
18

Alloy Composition

Aluminum (Al), % 1.4 to 1.8
0
Carbon (C), % 0 to 0.015
0 to 0.050
Chromium (Cr), % 11 to 12.5
2.3 to 2.7
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 71.5 to 75.5
93.6 to 96
Manganese (Mn), % 0 to 0.1
0.4 to 0.7
Molybdenum (Mo), % 1.8 to 2.3
0.9 to 1.2
Nickel (Ni), % 10.2 to 11.3
0 to 0.2
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.010
0 to 0.025
Silicon (Si), % 0 to 0.1
0.4 to 0.7
Sulfur (S), % 0 to 0.0050
0 to 0.025
Titanium (Ti), % 0.2 to 0.5
0
Residuals, % 0
0 to 0.5