MakeItFrom.com
Menu (ESC)

EN 1.4612 Stainless Steel vs. EN AC-43500 Aluminum

EN 1.4612 stainless steel belongs to the iron alloys classification, while EN AC-43500 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4612 stainless steel and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 11
4.5 to 13
Fatigue Strength, MPa 860 to 950
62 to 100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 1690 to 1850
220 to 300
Tensile Strength: Yield (Proof), MPa 1570 to 1730
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 280
550
Maximum Temperature: Mechanical, °C 790
170
Melting Completion (Liquidus), °C 1450
600
Melting Onset (Solidus), °C 1400
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 11
22

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 3.6
7.8
Embodied Energy, MJ/kg 50
150
Embodied Water, L/kg 140
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190 to 210
12 to 26
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 60 to 65
24 to 33
Strength to Weight: Bending, points 40 to 43
32 to 39
Thermal Shock Resistance, points 58 to 63
10 to 14

Alloy Composition

Aluminum (Al), % 1.4 to 1.8
86.4 to 90.5
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 71.5 to 75.5
0 to 0.25
Magnesium (Mg), % 0
0.1 to 0.6
Manganese (Mn), % 0 to 0.1
0.4 to 0.8
Molybdenum (Mo), % 1.8 to 2.3
0
Nickel (Ni), % 10.2 to 11.3
0
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.1
9.0 to 11.5
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0.2 to 0.5
0 to 0.2
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.15

Comparable Variants