MakeItFrom.com
Menu (ESC)

EN 1.4613 Stainless Steel vs. EN 1.1170 Steel

Both EN 1.4613 stainless steel and EN 1.1170 steel are iron alloys. They have 75% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4613 stainless steel and the bottom bar is EN 1.1170 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
180 to 210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
16 to 17
Fatigue Strength, MPa 180
220 to 330
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
73
Shear Strength, MPa 330
390 to 450
Tensile Strength: Ultimate (UTS), MPa 530
640 to 730
Tensile Strength: Yield (Proof), MPa 280
330 to 500

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 1050
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 19
50
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.1
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.5
Embodied Energy, MJ/kg 38
19
Embodied Water, L/kg 150
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
91 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 190
290 to 670
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
23 to 26
Strength to Weight: Bending, points 19
21 to 23
Thermal Diffusivity, mm2/s 5.2
13
Thermal Shock Resistance, points 18
20 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Carbon (C), % 0 to 0.030
0.25 to 0.32
Chromium (Cr), % 22 to 25
0 to 0.4
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 70.3 to 77.8
96.7 to 98.5
Manganese (Mn), % 0 to 1.0
1.3 to 1.7
Molybdenum (Mo), % 0 to 0.5
0 to 0.1
Nickel (Ni), % 0 to 0.5
0 to 0.4
Phosphorus (P), % 0 to 0.050
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.050
0 to 0.035
Titanium (Ti), % 0.2 to 1.0
0