MakeItFrom.com
Menu (ESC)

EN 1.4613 Stainless Steel vs. C32000 Brass

EN 1.4613 stainless steel belongs to the iron alloys classification, while C32000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4613 stainless steel and the bottom bar is C32000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 21
6.8 to 29
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
41
Shear Strength, MPa 330
180 to 280
Tensile Strength: Ultimate (UTS), MPa 530
270 to 470
Tensile Strength: Yield (Proof), MPa 280
78 to 390

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 1050
170
Melting Completion (Liquidus), °C 1430
1020
Melting Onset (Solidus), °C 1390
990
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 19
160
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
36
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
37

Otherwise Unclassified Properties

Base Metal Price, % relative 12
28
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 38
42
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
30 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 190
28 to 680
Stiffness to Weight: Axial, points 15
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19
8.8 to 15
Strength to Weight: Bending, points 19
11 to 16
Thermal Diffusivity, mm2/s 5.2
47
Thermal Shock Resistance, points 18
9.5 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 25
0
Copper (Cu), % 0 to 0.5
83.5 to 86.5
Iron (Fe), % 70.3 to 77.8
0 to 0.1
Lead (Pb), % 0
1.5 to 2.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
0 to 0.25
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0.2 to 1.0
0
Zinc (Zn), % 0
10.6 to 15
Residuals, % 0
0 to 0.4