MakeItFrom.com
Menu (ESC)

EN 1.4613 Stainless Steel vs. C34500 Brass

EN 1.4613 stainless steel belongs to the iron alloys classification, while C34500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4613 stainless steel and the bottom bar is C34500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 21
12 to 28
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 79
40
Shear Strength, MPa 330
220 to 260
Tensile Strength: Ultimate (UTS), MPa 530
340 to 430
Tensile Strength: Yield (Proof), MPa 280
120 to 180

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 1050
120
Melting Completion (Liquidus), °C 1430
910
Melting Onset (Solidus), °C 1390
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 19
120
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
29

Otherwise Unclassified Properties

Base Metal Price, % relative 12
24
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 38
45
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 190
69 to 160
Stiffness to Weight: Axial, points 15
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 19
12 to 15
Strength to Weight: Bending, points 19
13 to 16
Thermal Diffusivity, mm2/s 5.2
37
Thermal Shock Resistance, points 18
11 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 25
0
Copper (Cu), % 0 to 0.5
62 to 65
Iron (Fe), % 70.3 to 77.8
0 to 0.15
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0.2 to 1.0
0
Zinc (Zn), % 0
32 to 36.5
Residuals, % 0
0 to 0.4