MakeItFrom.com
Menu (ESC)

EN 1.4613 Stainless Steel vs. C82200 Copper

EN 1.4613 stainless steel belongs to the iron alloys classification, while C82200 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4613 stainless steel and the bottom bar is C82200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 21
8.0 to 20
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
44
Tensile Strength: Ultimate (UTS), MPa 530
390 to 660
Tensile Strength: Yield (Proof), MPa 280
210 to 520

Thermal Properties

Latent Heat of Fusion, J/g 290
220
Maximum Temperature: Mechanical, °C 1050
230
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1390
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 19
180
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
46

Otherwise Unclassified Properties

Base Metal Price, % relative 12
55
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.6
4.8
Embodied Energy, MJ/kg 38
74
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
49 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 190
180 to 1130
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 19
12 to 20
Strength to Weight: Bending, points 19
13 to 19
Thermal Diffusivity, mm2/s 5.2
53
Thermal Shock Resistance, points 18
14 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Beryllium (Be), % 0
0.35 to 0.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 25
0
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0 to 0.5
97.4 to 98.7
Iron (Fe), % 70.3 to 77.8
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
1.0 to 2.0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0.2 to 1.0
0
Residuals, % 0
0 to 0.5