MakeItFrom.com
Menu (ESC)

EN 1.4613 Stainless Steel vs. C85700 Brass

EN 1.4613 stainless steel belongs to the iron alloys classification, while C85700 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4613 stainless steel and the bottom bar is C85700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 21
17
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 530
310
Tensile Strength: Yield (Proof), MPa 280
110

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 1050
120
Melting Completion (Liquidus), °C 1430
940
Melting Onset (Solidus), °C 1390
910
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 19
84
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
25

Otherwise Unclassified Properties

Base Metal Price, % relative 12
24
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 38
47
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
41
Resilience: Unit (Modulus of Resilience), kJ/m3 190
59
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 19
11
Strength to Weight: Bending, points 19
13
Thermal Diffusivity, mm2/s 5.2
27
Thermal Shock Resistance, points 18
10

Alloy Composition

Aluminum (Al), % 0 to 0.050
0 to 0.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 25
0
Copper (Cu), % 0 to 0.5
58 to 64
Iron (Fe), % 70.3 to 77.8
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
0 to 1.0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.050
0
Tin (Sn), % 0
0.5 to 1.5
Titanium (Ti), % 0.2 to 1.0
0
Zinc (Zn), % 0
32 to 40
Residuals, % 0
0 to 1.3