MakeItFrom.com
Menu (ESC)

EN 1.4613 Stainless Steel vs. S41041 Stainless Steel

Both EN 1.4613 stainless steel and S41041 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4613 stainless steel and the bottom bar is S41041 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
240
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 21
17
Fatigue Strength, MPa 180
350
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
76
Shear Strength, MPa 330
560
Tensile Strength: Ultimate (UTS), MPa 530
910
Tensile Strength: Yield (Proof), MPa 280
580

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 550
430
Maximum Temperature: Mechanical, °C 1050
740
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 19
29
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
8.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.2
Embodied Energy, MJ/kg 38
31
Embodied Water, L/kg 150
100

Common Calculations

PREN (Pitting Resistance) 24
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
140
Resilience: Unit (Modulus of Resilience), kJ/m3 190
860
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
32
Strength to Weight: Bending, points 19
27
Thermal Diffusivity, mm2/s 5.2
7.8
Thermal Shock Resistance, points 18
33

Alloy Composition

Aluminum (Al), % 0 to 0.050
0 to 0.050
Carbon (C), % 0 to 0.030
0.13 to 0.18
Chromium (Cr), % 22 to 25
11.5 to 13
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 70.3 to 77.8
84.5 to 87.8
Manganese (Mn), % 0 to 1.0
0.4 to 0.6
Molybdenum (Mo), % 0 to 0.5
0 to 0.2
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.050
0 to 0.030
Titanium (Ti), % 0.2 to 1.0
0