MakeItFrom.com
Menu (ESC)

EN 1.4615 Stainless Steel vs. 5070 Aluminum

EN 1.4615 stainless steel belongs to the iron alloys classification, while 5070 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4615 stainless steel and the bottom bar is 5070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 50
20
Fatigue Strength, MPa 190
150
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 360
190
Tensile Strength: Ultimate (UTS), MPa 500
300
Tensile Strength: Yield (Proof), MPa 200
140

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 840
190
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1360
550
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
100

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.8
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 140
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
51
Resilience: Unit (Modulus of Resilience), kJ/m3 99
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 18
31
Strength to Weight: Bending, points 18
37
Thermal Diffusivity, mm2/s 4.1
53
Thermal Shock Resistance, points 11
14

Alloy Composition

Aluminum (Al), % 0
92.4 to 95.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 14 to 16
0 to 0.3
Copper (Cu), % 2.0 to 4.0
0 to 0.25
Iron (Fe), % 63.1 to 72.5
0 to 0.4
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 7.0 to 9.0
0.4 to 0.8
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 4.5 to 6.0
0
Nitrogen (N), % 0.020 to 0.060
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0.4 to 0.8
Residuals, % 0
0 to 0.15