MakeItFrom.com
Menu (ESC)

EN 1.4615 Stainless Steel vs. 713.0 Aluminum

EN 1.4615 stainless steel belongs to the iron alloys classification, while 713.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4615 stainless steel and the bottom bar is 713.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
74 to 75
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 50
3.9 to 4.3
Fatigue Strength, MPa 190
63 to 120
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
27
Shear Strength, MPa 360
180
Tensile Strength: Ultimate (UTS), MPa 500
240 to 260
Tensile Strength: Yield (Proof), MPa 200
170

Thermal Properties

Latent Heat of Fusion, J/g 280
370
Maximum Temperature: Mechanical, °C 840
180
Melting Completion (Liquidus), °C 1400
630
Melting Onset (Solidus), °C 1360
610
Specific Heat Capacity, J/kg-K 480
860
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 17
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
100

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
3.1
Embodied Carbon, kg CO2/kg material 2.8
7.8
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 140
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
8.7 to 9.9
Resilience: Unit (Modulus of Resilience), kJ/m3 99
210 to 220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 18
22 to 23
Strength to Weight: Bending, points 18
28 to 29
Thermal Diffusivity, mm2/s 4.1
57
Thermal Shock Resistance, points 11
10 to 11

Alloy Composition

Aluminum (Al), % 0
87.6 to 92.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 14 to 16
0 to 0.35
Copper (Cu), % 2.0 to 4.0
0.4 to 1.0
Iron (Fe), % 63.1 to 72.5
0 to 1.1
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 7.0 to 9.0
0 to 0.6
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 4.5 to 6.0
0 to 0.15
Nitrogen (N), % 0.020 to 0.060
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.25