MakeItFrom.com
Menu (ESC)

EN 1.4615 Stainless Steel vs. EN 1.4613 Stainless Steel

Both EN 1.4615 stainless steel and EN 1.4613 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4615 stainless steel and the bottom bar is EN 1.4613 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 50
21
Fatigue Strength, MPa 190
180
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
79
Shear Strength, MPa 360
330
Tensile Strength: Ultimate (UTS), MPa 500
530
Tensile Strength: Yield (Proof), MPa 200
280

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 400
550
Maximum Temperature: Mechanical, °C 840
1050
Melting Completion (Liquidus), °C 1400
1430
Melting Onset (Solidus), °C 1360
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
19
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 40
38
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 17
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
91
Resilience: Unit (Modulus of Resilience), kJ/m3 99
190
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
19
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 4.1
5.2
Thermal Shock Resistance, points 11
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 14 to 16
22 to 25
Copper (Cu), % 2.0 to 4.0
0 to 0.5
Iron (Fe), % 63.1 to 72.5
70.3 to 77.8
Manganese (Mn), % 7.0 to 9.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.8
0 to 0.5
Nickel (Ni), % 4.5 to 6.0
0 to 0.5
Nitrogen (N), % 0.020 to 0.060
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.050
Titanium (Ti), % 0
0.2 to 1.0