MakeItFrom.com
Menu (ESC)

EN 1.4615 Stainless Steel vs. EN 1.4872 Stainless Steel

Both EN 1.4615 stainless steel and EN 1.4872 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4615 stainless steel and the bottom bar is EN 1.4872 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
270
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 50
28
Fatigue Strength, MPa 190
410
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
79
Shear Strength, MPa 360
620
Tensile Strength: Ultimate (UTS), MPa 500
950
Tensile Strength: Yield (Proof), MPa 200
560

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 400
440
Maximum Temperature: Mechanical, °C 840
1150
Melting Completion (Liquidus), °C 1400
1390
Melting Onset (Solidus), °C 1360
1340
Specific Heat Capacity, J/kg-K 480
490
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 13
17
Density, g/cm3 7.8
7.6
Embodied Carbon, kg CO2/kg material 2.8
3.3
Embodied Energy, MJ/kg 40
47
Embodied Water, L/kg 140
180

Common Calculations

PREN (Pitting Resistance) 17
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
230
Resilience: Unit (Modulus of Resilience), kJ/m3 99
780
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
26
Strength to Weight: Axial, points 18
35
Strength to Weight: Bending, points 18
28
Thermal Diffusivity, mm2/s 4.1
3.9
Thermal Shock Resistance, points 11
21

Alloy Composition

Carbon (C), % 0 to 0.030
0.2 to 0.3
Chromium (Cr), % 14 to 16
24 to 26
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 63.1 to 72.5
54.2 to 61.6
Manganese (Mn), % 7.0 to 9.0
8.0 to 10
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 4.5 to 6.0
6.0 to 8.0
Nitrogen (N), % 0.020 to 0.060
0.2 to 0.4
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015