MakeItFrom.com
Menu (ESC)

EN 1.4615 Stainless Steel vs. C10500 Copper

EN 1.4615 stainless steel belongs to the iron alloys classification, while C10500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4615 stainless steel and the bottom bar is C10500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 50
2.8 to 51
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 360
150 to 210
Tensile Strength: Ultimate (UTS), MPa 500
220 to 400
Tensile Strength: Yield (Proof), MPa 200
75 to 400

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 840
200
Melting Completion (Liquidus), °C 1400
1080
Melting Onset (Solidus), °C 1360
1080
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
390
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
100
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
100

Otherwise Unclassified Properties

Base Metal Price, % relative 13
32
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 40
42
Embodied Water, L/kg 140
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
11 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 99
24 to 680
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18
6.8 to 12
Strength to Weight: Bending, points 18
9.1 to 14
Thermal Diffusivity, mm2/s 4.1
110
Thermal Shock Resistance, points 11
7.8 to 14

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 2.0 to 4.0
99.89 to 99.966
Iron (Fe), % 63.1 to 72.5
0
Manganese (Mn), % 7.0 to 9.0
0
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 4.5 to 6.0
0
Nitrogen (N), % 0.020 to 0.060
0
Oxygen (O), % 0
0 to 0.0010
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Silver (Ag), % 0
0.034 to 0.060
Sulfur (S), % 0 to 0.010
0
Residuals, % 0
0 to 0.050