MakeItFrom.com
Menu (ESC)

EN 1.4615 Stainless Steel vs. N08535 Stainless Steel

Both EN 1.4615 stainless steel and N08535 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 59% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4615 stainless steel and the bottom bar is N08535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 50
46
Fatigue Strength, MPa 190
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
80
Shear Strength, MPa 360
400
Tensile Strength: Ultimate (UTS), MPa 500
570
Tensile Strength: Yield (Proof), MPa 200
240

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Corrosion, °C 400
450
Maximum Temperature: Mechanical, °C 840
1100
Melting Completion (Liquidus), °C 1400
1420
Melting Onset (Solidus), °C 1360
1370
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
13
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 13
36
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 2.8
6.3
Embodied Energy, MJ/kg 40
87
Embodied Water, L/kg 140
230

Common Calculations

PREN (Pitting Resistance) 17
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
210
Resilience: Unit (Modulus of Resilience), kJ/m3 99
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 4.1
3.3
Thermal Shock Resistance, points 11
13

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 14 to 16
24 to 27
Copper (Cu), % 2.0 to 4.0
0 to 1.5
Iron (Fe), % 63.1 to 72.5
29.4 to 44.5
Manganese (Mn), % 7.0 to 9.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.8
2.5 to 4.0
Nickel (Ni), % 4.5 to 6.0
29 to 36.5
Nitrogen (N), % 0.020 to 0.060
0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.030