MakeItFrom.com
Menu (ESC)

EN 1.4618 Stainless Steel vs. EN 1.0536 Steel

Both EN 1.4618 stainless steel and EN 1.0536 steel are iron alloys. They have 69% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4618 stainless steel and the bottom bar is EN 1.0536 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 51
18
Fatigue Strength, MPa 240 to 250
340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 480 to 500
440
Tensile Strength: Ultimate (UTS), MPa 680 to 700
710
Tensile Strength: Yield (Proof), MPa 250 to 260
510

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 900
400
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1360
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
51
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.1
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 39
24
Embodied Water, L/kg 150
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270 to 280
120
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 170
690
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24 to 25
25
Strength to Weight: Bending, points 22 to 23
23
Thermal Diffusivity, mm2/s 4.0
14
Thermal Shock Resistance, points 15 to 16
22

Alloy Composition

Aluminum (Al), % 0
0.010 to 0.050
Carbon (C), % 0 to 0.1
0.16 to 0.22
Chromium (Cr), % 16.5 to 18.5
0
Copper (Cu), % 1.0 to 2.5
0
Iron (Fe), % 62.7 to 72.5
97.2 to 98.4
Manganese (Mn), % 5.5 to 9.5
1.3 to 1.7
Nickel (Ni), % 4.5 to 5.5
0
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0 to 0.15
0 to 0.020
Phosphorus (P), % 0 to 0.070
0 to 0.030
Silicon (Si), % 0 to 1.0
0.1 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.035
Vanadium (V), % 0
0.080 to 0.15