MakeItFrom.com
Menu (ESC)

EN 1.4618 Stainless Steel vs. EN 1.7378 Steel

Both EN 1.4618 stainless steel and EN 1.7378 steel are iron alloys. They have 71% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4618 stainless steel and the bottom bar is EN 1.7378 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 51
17
Fatigue Strength, MPa 240 to 250
330
Impact Strength: V-Notched Charpy, J 90 to 91
38
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
74
Shear Strength, MPa 480 to 500
430
Tensile Strength: Ultimate (UTS), MPa 680 to 700
700
Tensile Strength: Yield (Proof), MPa 250 to 260
490

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 900
460
Melting Completion (Liquidus), °C 1400
1470
Melting Onset (Solidus), °C 1360
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
39
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 13
4.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.3
Embodied Energy, MJ/kg 39
33
Embodied Water, L/kg 150
61

Common Calculations

PREN (Pitting Resistance) 19
5.8
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270 to 280
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 170
630
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24 to 25
25
Strength to Weight: Bending, points 22 to 23
22
Thermal Diffusivity, mm2/s 4.0
10
Thermal Shock Resistance, points 15 to 16
20

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0015 to 0.0070
Carbon (C), % 0 to 0.1
0.050 to 0.1
Chromium (Cr), % 16.5 to 18.5
2.2 to 2.6
Copper (Cu), % 1.0 to 2.5
0
Iron (Fe), % 62.7 to 72.5
94.6 to 96.1
Manganese (Mn), % 5.5 to 9.5
0.3 to 0.7
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 4.5 to 5.5
0
Nitrogen (N), % 0 to 0.15
0 to 0.010
Phosphorus (P), % 0 to 0.070
0 to 0.020
Silicon (Si), % 0 to 1.0
0.15 to 0.45
Sulfur (S), % 0 to 0.010
0 to 0.010
Titanium (Ti), % 0
0.050 to 0.1
Vanadium (V), % 0
0.2 to 0.3