MakeItFrom.com
Menu (ESC)

EN 1.4618 Stainless Steel vs. EN 1.8898 Steel

Both EN 1.4618 stainless steel and EN 1.8898 steel are iron alloys. They have 69% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4618 stainless steel and the bottom bar is EN 1.8898 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 210
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 51
18
Fatigue Strength, MPa 240 to 250
330
Impact Strength: V-Notched Charpy, J 90 to 91
45
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 480 to 500
370
Tensile Strength: Ultimate (UTS), MPa 680 to 700
600
Tensile Strength: Yield (Proof), MPa 250 to 260
490

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 900
400
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1360
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
49
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.2
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.6
Embodied Energy, MJ/kg 39
22
Embodied Water, L/kg 150
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270 to 280
100
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 170
650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24 to 25
21
Strength to Weight: Bending, points 22 to 23
20
Thermal Diffusivity, mm2/s 4.0
13
Thermal Shock Resistance, points 15 to 16
18

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.1
0 to 0.16
Chromium (Cr), % 16.5 to 18.5
0
Copper (Cu), % 1.0 to 2.5
0
Iron (Fe), % 62.7 to 72.5
96.7 to 99.98
Manganese (Mn), % 5.5 to 9.5
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 4.5 to 5.5
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.15
0 to 0.025
Phosphorus (P), % 0 to 0.070
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12