EN 1.4618 Stainless Steel vs. EN 2.4650 Nickel
EN 1.4618 stainless steel belongs to the iron alloys classification, while EN 2.4650 nickel belongs to the nickel alloys. They have a modest 24% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is EN 1.4618 stainless steel and the bottom bar is EN 2.4650 nickel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
210 |
Elongation at Break, % | 51 | |
34 |
Fatigue Strength, MPa | 240 to 250 | |
480 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 77 | |
80 |
Shear Strength, MPa | 480 to 500 | |
730 |
Tensile Strength: Ultimate (UTS), MPa | 680 to 700 | |
1090 |
Tensile Strength: Yield (Proof), MPa | 250 to 260 | |
650 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
320 |
Maximum Temperature: Mechanical, °C | 900 | |
1010 |
Melting Completion (Liquidus), °C | 1400 | |
1400 |
Melting Onset (Solidus), °C | 1360 | |
1350 |
Specific Heat Capacity, J/kg-K | 480 | |
450 |
Thermal Conductivity, W/m-K | 15 | |
12 |
Thermal Expansion, µm/m-K | 16 | |
11 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.4 | |
1.5 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.7 | |
1.6 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 13 | |
80 |
Density, g/cm3 | 7.7 | |
8.5 |
Embodied Carbon, kg CO2/kg material | 2.7 | |
10 |
Embodied Energy, MJ/kg | 39 | |
140 |
Embodied Water, L/kg | 150 | |
360 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 270 to 280 | |
320 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 160 to 170 | |
1030 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
23 |
Strength to Weight: Axial, points | 24 to 25 | |
36 |
Strength to Weight: Bending, points | 22 to 23 | |
28 |
Thermal Diffusivity, mm2/s | 4.0 | |
3.1 |
Thermal Shock Resistance, points | 15 to 16 | |
33 |
Alloy Composition
Aluminum (Al), % | 0 | |
0.3 to 0.6 |
Boron (B), % | 0 | |
0 to 0.0050 |
Carbon (C), % | 0 to 0.1 | |
0.040 to 0.080 |
Chromium (Cr), % | 16.5 to 18.5 | |
19 to 21 |
Cobalt (Co), % | 0 | |
19 to 21 |
Copper (Cu), % | 1.0 to 2.5 | |
0 to 0.2 |
Iron (Fe), % | 62.7 to 72.5 | |
0 to 0.7 |
Manganese (Mn), % | 5.5 to 9.5 | |
0 to 0.6 |
Molybdenum (Mo), % | 0 | |
5.6 to 6.1 |
Nickel (Ni), % | 4.5 to 5.5 | |
46.9 to 54.2 |
Nitrogen (N), % | 0 to 0.15 | |
0 |
Phosphorus (P), % | 0 to 0.070 | |
0 to 0.020 |
Silicon (Si), % | 0 to 1.0 | |
0 to 0.4 |
Sulfur (S), % | 0 to 0.010 | |
0 to 0.0070 |
Titanium (Ti), % | 0 | |
1.9 to 2.4 |