MakeItFrom.com
Menu (ESC)

EN 1.4618 Stainless Steel vs. C86200 Bronze

EN 1.4618 stainless steel belongs to the iron alloys classification, while C86200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4618 stainless steel and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 51
21
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 680 to 700
710
Tensile Strength: Yield (Proof), MPa 250 to 260
350

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 900
160
Melting Completion (Liquidus), °C 1400
940
Melting Onset (Solidus), °C 1360
900
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 15
35
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 39
49
Embodied Water, L/kg 150
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270 to 280
120
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 170
540
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 24 to 25
25
Strength to Weight: Bending, points 22 to 23
22
Thermal Diffusivity, mm2/s 4.0
11
Thermal Shock Resistance, points 15 to 16
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 16.5 to 18.5
0
Copper (Cu), % 1.0 to 2.5
60 to 66
Iron (Fe), % 62.7 to 72.5
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 5.5 to 9.5
2.5 to 5.0
Nickel (Ni), % 4.5 to 5.5
0 to 1.0
Nitrogen (N), % 0 to 0.15
0
Phosphorus (P), % 0 to 0.070
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0