MakeItFrom.com
Menu (ESC)

EN 1.4630 Stainless Steel vs. 6005A Aluminum

EN 1.4630 stainless steel belongs to the iron alloys classification, while 6005A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4630 stainless steel and the bottom bar is 6005A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 23
8.6 to 17
Fatigue Strength, MPa 170
55 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 300
120 to 180
Tensile Strength: Ultimate (UTS), MPa 480
190 to 300
Tensile Strength: Yield (Proof), MPa 250
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 800
170
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1390
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 28
180 to 190
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
47 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.5
8.3
Embodied Energy, MJ/kg 36
150
Embodied Water, L/kg 120
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 160
76 to 530
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 17
20 to 30
Strength to Weight: Bending, points 18
27 to 36
Thermal Diffusivity, mm2/s 7.5
72 to 79
Thermal Shock Resistance, points 17
8.6 to 13

Alloy Composition

Aluminum (Al), % 0 to 1.5
96.5 to 99.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 13 to 16
0 to 0.3
Copper (Cu), % 0 to 0.5
0 to 0.3
Iron (Fe), % 77.1 to 86.7
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0.2 to 1.5
0.5 to 0.9
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.8
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15