MakeItFrom.com
Menu (ESC)

EN 1.4630 Stainless Steel vs. AISI 201L Stainless Steel

Both EN 1.4630 stainless steel and AISI 201L stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4630 stainless steel and the bottom bar is AISI 201L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
22 to 46
Fatigue Strength, MPa 170
270 to 530
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 300
520 to 660
Tensile Strength: Ultimate (UTS), MPa 480
740 to 1040
Tensile Strength: Yield (Proof), MPa 250
290 to 790

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 520
410
Maximum Temperature: Mechanical, °C 800
880
Melting Completion (Liquidus), °C 1440
1410
Melting Onset (Solidus), °C 1390
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 28
15
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.5
2.6
Embodied Energy, MJ/kg 36
38
Embodied Water, L/kg 120
140

Common Calculations

PREN (Pitting Resistance) 15
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 160
220 to 1570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
27 to 37
Strength to Weight: Bending, points 18
24 to 30
Thermal Diffusivity, mm2/s 7.5
4.0
Thermal Shock Resistance, points 17
16 to 23

Alloy Composition

Aluminum (Al), % 0 to 1.5
0
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 13 to 16
16 to 18
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 77.1 to 86.7
67.9 to 75
Manganese (Mn), % 0 to 1.0
5.5 to 7.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
3.5 to 5.5
Niobium (Nb), % 0 to 0.5
0
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0.2 to 1.5
0 to 0.75
Sulfur (S), % 0 to 0.050
0 to 0.030
Titanium (Ti), % 0.15 to 0.8
0