MakeItFrom.com
Menu (ESC)

EN 1.4630 Stainless Steel vs. CC484K Bronze

EN 1.4630 stainless steel belongs to the iron alloys classification, while CC484K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4630 stainless steel and the bottom bar is CC484K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 23
11
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 480
330
Tensile Strength: Yield (Proof), MPa 250
200

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 800
170
Melting Completion (Liquidus), °C 1440
1000
Melting Onset (Solidus), °C 1390
870
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 28
70
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
9.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.5
3.9
Embodied Energy, MJ/kg 36
64
Embodied Water, L/kg 120
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
32
Resilience: Unit (Modulus of Resilience), kJ/m3 160
180
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
10
Strength to Weight: Bending, points 18
12
Thermal Diffusivity, mm2/s 7.5
22
Thermal Shock Resistance, points 17
12

Alloy Composition

Aluminum (Al), % 0 to 1.5
0 to 0.010
Antimony (Sb), % 0
0 to 0.1
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 13 to 16
0
Copper (Cu), % 0 to 0.5
84.5 to 87.5
Iron (Fe), % 77.1 to 86.7
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.0
0 to 0.2
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
1.5 to 2.5
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.050
0.050 to 0.4
Silicon (Si), % 0.2 to 1.5
0 to 0.010
Sulfur (S), % 0 to 0.050
0 to 0.050
Tin (Sn), % 0
11 to 13
Titanium (Ti), % 0.15 to 0.8
0
Zinc (Zn), % 0
0 to 0.4