MakeItFrom.com
Menu (ESC)

EN 1.4630 Stainless Steel vs. EQ21A Magnesium

EN 1.4630 stainless steel belongs to the iron alloys classification, while EQ21A magnesium belongs to the magnesium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4630 stainless steel and the bottom bar is EQ21A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
44
Elongation at Break, % 23
2.4
Fatigue Strength, MPa 170
110
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
17
Shear Strength, MPa 300
150
Tensile Strength: Ultimate (UTS), MPa 480
250
Tensile Strength: Yield (Proof), MPa 250
190

Thermal Properties

Latent Heat of Fusion, J/g 290
340
Maximum Temperature: Mechanical, °C 800
160
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1390
560
Specific Heat Capacity, J/kg-K 480
980
Thermal Conductivity, W/m-K 28
110
Thermal Expansion, µm/m-K 10
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
25
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 7.7
1.9
Embodied Carbon, kg CO2/kg material 2.5
27
Embodied Energy, MJ/kg 36
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 160
410
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
63
Strength to Weight: Axial, points 17
37
Strength to Weight: Bending, points 18
47
Thermal Diffusivity, mm2/s 7.5
62
Thermal Shock Resistance, points 17
15

Alloy Composition

Aluminum (Al), % 0 to 1.5
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 13 to 16
0
Copper (Cu), % 0 to 0.5
0.050 to 0.1
Iron (Fe), % 77.1 to 86.7
0
Magnesium (Mg), % 0
93.9 to 96.8
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
0 to 0.010
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0.2 to 1.5
0
Silver (Ag), % 0
1.3 to 1.7
Sulfur (S), % 0 to 0.050
0
Titanium (Ti), % 0.15 to 0.8
0
Unspecified Rare Earths, % 0
1.5 to 3.0
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.3