MakeItFrom.com
Menu (ESC)

EN 1.4630 Stainless Steel vs. SAE-AISI 1040 Steel

Both EN 1.4630 stainless steel and SAE-AISI 1040 steel are iron alloys. They have 82% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4630 stainless steel and the bottom bar is SAE-AISI 1040 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
13 to 20
Fatigue Strength, MPa 170
220 to 340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 300
350 to 390
Tensile Strength: Ultimate (UTS), MPa 480
570 to 640
Tensile Strength: Yield (Proof), MPa 250
320 to 530

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 800
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 28
51
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.5
1.4
Embodied Energy, MJ/kg 36
18
Embodied Water, L/kg 120
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
79 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 160
270 to 760
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
20 to 23
Strength to Weight: Bending, points 18
19 to 21
Thermal Diffusivity, mm2/s 7.5
14
Thermal Shock Resistance, points 17
18 to 20

Alloy Composition

Aluminum (Al), % 0 to 1.5
0
Carbon (C), % 0 to 0.030
0.37 to 0.44
Chromium (Cr), % 13 to 16
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 77.1 to 86.7
98.6 to 99.03
Manganese (Mn), % 0 to 1.0
0.6 to 0.9
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0.2 to 1.5
0
Sulfur (S), % 0 to 0.050
0 to 0.050
Titanium (Ti), % 0.15 to 0.8
0