MakeItFrom.com
Menu (ESC)

EN 1.4630 Stainless Steel vs. N08020 Stainless Steel

Both EN 1.4630 stainless steel and N08020 stainless steel are iron alloys. They have 54% of their average alloy composition in common.

For each property being compared, the top bar is EN 1.4630 stainless steel and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
15 to 34
Fatigue Strength, MPa 170
210 to 240
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 300
380 to 410
Tensile Strength: Ultimate (UTS), MPa 480
610 to 620
Tensile Strength: Yield (Proof), MPa 250
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 520
490
Maximum Temperature: Mechanical, °C 800
1100
Melting Completion (Liquidus), °C 1440
1410
Melting Onset (Solidus), °C 1390
1360
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 28
12
Thermal Expansion, µm/m-K 10
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
38
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.5
6.6
Embodied Energy, MJ/kg 36
92
Embodied Water, L/kg 120
220

Common Calculations

PREN (Pitting Resistance) 15
28
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 160
180 to 440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 7.5
3.2
Thermal Shock Resistance, points 17
15

Alloy Composition

Aluminum (Al), % 0 to 1.5
0
Carbon (C), % 0 to 0.030
0 to 0.070
Chromium (Cr), % 13 to 16
19 to 21
Copper (Cu), % 0 to 0.5
3.0 to 4.0
Iron (Fe), % 77.1 to 86.7
29.9 to 44
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0 to 0.5
2.0 to 3.0
Nickel (Ni), % 0 to 0.5
32 to 38
Niobium (Nb), % 0 to 0.5
0 to 1.0
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0.2 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.035
Titanium (Ti), % 0.15 to 0.8
0