MakeItFrom.com
Menu (ESC)

EN 1.4630 Stainless Steel vs. S21900 Stainless Steel

Both EN 1.4630 stainless steel and S21900 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 79% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4630 stainless steel and the bottom bar is S21900 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
50
Fatigue Strength, MPa 170
380
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 300
510
Tensile Strength: Ultimate (UTS), MPa 480
710
Tensile Strength: Yield (Proof), MPa 250
390

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 520
420
Maximum Temperature: Mechanical, °C 800
980
Melting Completion (Liquidus), °C 1440
1400
Melting Onset (Solidus), °C 1390
1350
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 28
14
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.5
3.0
Embodied Energy, MJ/kg 36
43
Embodied Water, L/kg 120
160

Common Calculations

PREN (Pitting Resistance) 15
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
300
Resilience: Unit (Modulus of Resilience), kJ/m3 160
380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
26
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 7.5
3.8
Thermal Shock Resistance, points 17
15

Alloy Composition

Aluminum (Al), % 0 to 1.5
0
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 13 to 16
19 to 21.5
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 77.1 to 86.7
59.4 to 67.4
Manganese (Mn), % 0 to 1.0
8.0 to 10
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
5.5 to 7.5
Niobium (Nb), % 0 to 0.5
0
Nitrogen (N), % 0
0.15 to 0.4
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0.2 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Titanium (Ti), % 0.15 to 0.8
0