MakeItFrom.com
Menu (ESC)

EN 1.4630 Stainless Steel vs. S31100 Stainless Steel

Both EN 1.4630 stainless steel and S31100 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 82% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4630 stainless steel and the bottom bar is S31100 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
4.5
Fatigue Strength, MPa 170
330
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
79
Shear Strength, MPa 300
580
Tensile Strength: Ultimate (UTS), MPa 480
1000
Tensile Strength: Yield (Proof), MPa 250
710

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 520
470
Maximum Temperature: Mechanical, °C 800
1100
Melting Completion (Liquidus), °C 1440
1420
Melting Onset (Solidus), °C 1390
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 28
16
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.5
3.1
Embodied Energy, MJ/kg 36
44
Embodied Water, L/kg 120
170

Common Calculations

PREN (Pitting Resistance) 15
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
40
Resilience: Unit (Modulus of Resilience), kJ/m3 160
1240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
36
Strength to Weight: Bending, points 18
29
Thermal Diffusivity, mm2/s 7.5
4.2
Thermal Shock Resistance, points 17
28

Alloy Composition

Aluminum (Al), % 0 to 1.5
0
Carbon (C), % 0 to 0.030
0 to 0.060
Chromium (Cr), % 13 to 16
25 to 27
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 77.1 to 86.7
63.6 to 69
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
6.0 to 7.0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0.2 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.030
Titanium (Ti), % 0.15 to 0.8
0 to 0.25