MakeItFrom.com
Menu (ESC)

EN 1.4630 Stainless Steel vs. S31655 Stainless Steel

Both EN 1.4630 stainless steel and S31655 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4630 stainless steel and the bottom bar is S31655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
39
Fatigue Strength, MPa 170
300
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 300
490
Tensile Strength: Ultimate (UTS), MPa 480
710
Tensile Strength: Yield (Proof), MPa 250
350

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 520
430
Maximum Temperature: Mechanical, °C 800
1010
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1390
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 28
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
17
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.5
3.3
Embodied Energy, MJ/kg 36
46
Embodied Water, L/kg 120
160

Common Calculations

PREN (Pitting Resistance) 15
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
230
Resilience: Unit (Modulus of Resilience), kJ/m3 160
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
25
Strength to Weight: Bending, points 18
23
Thermal Diffusivity, mm2/s 7.5
4.0
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 0 to 1.5
0
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 13 to 16
19.5 to 21.5
Copper (Cu), % 0 to 0.5
0 to 1.0
Iron (Fe), % 77.1 to 86.7
63.2 to 71.9
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0 to 0.5
0.5 to 1.5
Nickel (Ni), % 0 to 0.5
8.0 to 9.5
Niobium (Nb), % 0 to 0.5
0
Nitrogen (N), % 0
0.14 to 0.25
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0.2 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Titanium (Ti), % 0.15 to 0.8
0