MakeItFrom.com
Menu (ESC)

EN 1.4630 Stainless Steel vs. S32750 Stainless Steel

Both EN 1.4630 stainless steel and S32750 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 79% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4630 stainless steel and the bottom bar is S32750 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 23
17
Fatigue Strength, MPa 170
360
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
81
Shear Strength, MPa 300
530
Tensile Strength: Ultimate (UTS), MPa 480
860
Tensile Strength: Yield (Proof), MPa 250
590

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 520
450
Maximum Temperature: Mechanical, °C 800
1100
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 28
15
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
21
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.5
4.1
Embodied Energy, MJ/kg 36
56
Embodied Water, L/kg 120
180

Common Calculations

PREN (Pitting Resistance) 15
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
130
Resilience: Unit (Modulus of Resilience), kJ/m3 160
860
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
31
Strength to Weight: Bending, points 18
26
Thermal Diffusivity, mm2/s 7.5
4.0
Thermal Shock Resistance, points 17
25

Alloy Composition

Aluminum (Al), % 0 to 1.5
0
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 13 to 16
24 to 26
Copper (Cu), % 0 to 0.5
0 to 0.5
Iron (Fe), % 77.1 to 86.7
58.1 to 66.8
Manganese (Mn), % 0 to 1.0
0 to 1.2
Molybdenum (Mo), % 0 to 0.5
3.0 to 5.0
Nickel (Ni), % 0 to 0.5
6.0 to 8.0
Niobium (Nb), % 0 to 0.5
0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0 to 0.050
0 to 0.035
Silicon (Si), % 0.2 to 1.5
0 to 0.8
Sulfur (S), % 0 to 0.050
0 to 0.020
Titanium (Ti), % 0.15 to 0.8
0