MakeItFrom.com
Menu (ESC)

EN 1.4634 Stainless Steel vs. ACI-ASTM CF3 Steel

Both EN 1.4634 stainless steel and ACI-ASTM CF3 steel are iron alloys. They have 89% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4634 stainless steel and the bottom bar is ACI-ASTM CF3 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
60
Fatigue Strength, MPa 180
270
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Tensile Strength: Ultimate (UTS), MPa 540
510
Tensile Strength: Yield (Proof), MPa 280
250

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 500
420
Maximum Temperature: Mechanical, °C 900
960
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1390
1450
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
16
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.9
3.2
Embodied Energy, MJ/kg 42
45
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 19
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
250
Resilience: Unit (Modulus of Resilience), kJ/m3 200
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
18
Strength to Weight: Bending, points 19
18
Thermal Diffusivity, mm2/s 5.8
4.3
Thermal Shock Resistance, points 19
11

Alloy Composition

Aluminum (Al), % 0.2 to 1.5
0
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 17.5 to 18.5
17 to 21
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 74.9 to 81.8
62.9 to 75
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 0 to 0.5
8.0 to 12
Niobium (Nb), % 0.3 to 1.0
0
Phosphorus (P), % 0 to 0.050
0 to 0.040
Silicon (Si), % 0.2 to 1.5
0 to 2.0
Sulfur (S), % 0 to 0.050
0 to 0.040