MakeItFrom.com
Menu (ESC)

EN 1.4634 Stainless Steel vs. S39274 Stainless Steel

Both EN 1.4634 stainless steel and S39274 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 81% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4634 stainless steel and the bottom bar is S39274 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 21
17
Fatigue Strength, MPa 180
380
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
81
Shear Strength, MPa 340
560
Tensile Strength: Ultimate (UTS), MPa 540
900
Tensile Strength: Yield (Proof), MPa 280
620

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 500
450
Maximum Temperature: Mechanical, °C 900
1100
Melting Completion (Liquidus), °C 1430
1480
Melting Onset (Solidus), °C 1390
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 13
24
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.9
4.3
Embodied Energy, MJ/kg 42
60
Embodied Water, L/kg 140
180

Common Calculations

PREN (Pitting Resistance) 19
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
140
Resilience: Unit (Modulus of Resilience), kJ/m3 200
940
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
32
Strength to Weight: Bending, points 19
26
Thermal Diffusivity, mm2/s 5.8
4.2
Thermal Shock Resistance, points 19
25

Alloy Composition

Aluminum (Al), % 0.2 to 1.5
0
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 17.5 to 18.5
24 to 26
Copper (Cu), % 0 to 0.5
0.2 to 0.8
Iron (Fe), % 74.9 to 81.8
57 to 65.6
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
2.5 to 3.5
Nickel (Ni), % 0 to 0.5
6.0 to 8.0
Niobium (Nb), % 0.3 to 1.0
0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0.2 to 1.5
0 to 0.8
Sulfur (S), % 0 to 0.050
0 to 0.020
Tungsten (W), % 0
1.5 to 2.5