MakeItFrom.com
Menu (ESC)

EN 1.4640 Stainless Steel vs. EN 2.4633 Nickel

EN 1.4640 stainless steel belongs to the iron alloys classification, while EN 2.4633 nickel belongs to the nickel alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4640 stainless steel and the bottom bar is EN 2.4633 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 51
34
Fatigue Strength, MPa 230 to 250
230
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 440 to 460
510
Tensile Strength: Ultimate (UTS), MPa 620 to 650
760
Tensile Strength: Yield (Proof), MPa 240 to 260
310

Thermal Properties

Latent Heat of Fusion, J/g 280
320
Maximum Temperature: Mechanical, °C 930
1000
Melting Completion (Liquidus), °C 1420
1350
Melting Onset (Solidus), °C 1380
1300
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
11
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 14
50
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.8
8.4
Embodied Energy, MJ/kg 40
120
Embodied Water, L/kg 150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250 to 260
210
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 170
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22 to 23
26
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 4.0
2.9
Thermal Shock Resistance, points 14 to 15
22

Alloy Composition

Aluminum (Al), % 0
1.8 to 2.4
Carbon (C), % 0.030 to 0.080
0.15 to 0.25
Chromium (Cr), % 18 to 19
24 to 26
Copper (Cu), % 1.3 to 2.0
0 to 0.1
Iron (Fe), % 67.4 to 73.6
8.0 to 11
Manganese (Mn), % 1.5 to 4.0
0 to 0.5
Nickel (Ni), % 5.5 to 6.9
58.8 to 65.9
Nitrogen (N), % 0.030 to 0.11
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0.1 to 0.2
Yttrium (Y), % 0
0.050 to 0.12
Zirconium (Zr), % 0
0.010 to 0.1