MakeItFrom.com
Menu (ESC)

EN 1.4640 Stainless Steel vs. C71640 Copper-nickel

EN 1.4640 stainless steel belongs to the iron alloys classification, while C71640 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4640 stainless steel and the bottom bar is C71640 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
52
Tensile Strength: Ultimate (UTS), MPa 620 to 650
490 to 630
Tensile Strength: Yield (Proof), MPa 240 to 260
190 to 460

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 930
260
Melting Completion (Liquidus), °C 1420
1180
Melting Onset (Solidus), °C 1380
1120
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 15
29
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 14
40
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.8
5.0
Embodied Energy, MJ/kg 40
73
Embodied Water, L/kg 150
280

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 170
130 to 750
Stiffness to Weight: Axial, points 14
8.7
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22 to 23
15 to 20
Strength to Weight: Bending, points 21
16 to 18
Thermal Diffusivity, mm2/s 4.0
8.2
Thermal Shock Resistance, points 14 to 15
16 to 21

Alloy Composition

Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 18 to 19
0
Copper (Cu), % 1.3 to 2.0
61.7 to 67.8
Iron (Fe), % 67.4 to 73.6
1.7 to 2.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 1.5 to 4.0
1.5 to 2.5
Nickel (Ni), % 5.5 to 6.9
29 to 32
Nitrogen (N), % 0.030 to 0.11
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5