MakeItFrom.com
Menu (ESC)

EN 1.4640 Stainless Steel vs. S17400 Stainless Steel

Both EN 1.4640 stainless steel and S17400 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4640 stainless steel and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 200
280 to 440
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 51
11 to 21
Fatigue Strength, MPa 230 to 250
380 to 670
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Shear Strength, MPa 440 to 460
570 to 830
Tensile Strength: Ultimate (UTS), MPa 620 to 650
910 to 1390
Tensile Strength: Yield (Proof), MPa 240 to 260
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 420
450
Maximum Temperature: Mechanical, °C 930
850
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
17
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 14
14
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 40
39
Embodied Water, L/kg 150
130

Common Calculations

PREN (Pitting Resistance) 20
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 250 to 260
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 170
880 to 4060
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22 to 23
32 to 49
Strength to Weight: Bending, points 21
27 to 35
Thermal Diffusivity, mm2/s 4.0
4.5
Thermal Shock Resistance, points 14 to 15
30 to 46

Alloy Composition

Carbon (C), % 0.030 to 0.080
0 to 0.070
Chromium (Cr), % 18 to 19
15 to 17
Copper (Cu), % 1.3 to 2.0
3.0 to 5.0
Iron (Fe), % 67.4 to 73.6
70.4 to 78.9
Manganese (Mn), % 1.5 to 4.0
0 to 1.0
Nickel (Ni), % 5.5 to 6.9
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Nitrogen (N), % 0.030 to 0.11
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030