MakeItFrom.com
Menu (ESC)

EN 1.4640 Stainless Steel vs. S44660 Stainless Steel

Both EN 1.4640 stainless steel and S44660 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4640 stainless steel and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 200
210
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 51
20
Fatigue Strength, MPa 230 to 250
330
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
81
Shear Strength, MPa 440 to 460
410
Tensile Strength: Ultimate (UTS), MPa 620 to 650
660
Tensile Strength: Yield (Proof), MPa 240 to 260
510

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 420
640
Maximum Temperature: Mechanical, °C 930
1100
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
17
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 14
21
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.8
4.3
Embodied Energy, MJ/kg 40
61
Embodied Water, L/kg 150
180

Common Calculations

PREN (Pitting Resistance) 20
38
Resilience: Ultimate (Unit Rupture Work), MJ/m3 250 to 260
120
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 170
640
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22 to 23
24
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 4.0
4.5
Thermal Shock Resistance, points 14 to 15
21

Alloy Composition

Carbon (C), % 0.030 to 0.080
0 to 0.030
Chromium (Cr), % 18 to 19
25 to 28
Copper (Cu), % 1.3 to 2.0
0
Iron (Fe), % 67.4 to 73.6
60.4 to 71
Manganese (Mn), % 1.5 to 4.0
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 5.5 to 6.9
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0.030 to 0.11
0 to 0.040
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0