MakeItFrom.com
Menu (ESC)

EN 1.4646 Stainless Steel vs. 359.0 Aluminum

EN 1.4646 stainless steel belongs to the iron alloys classification, while 359.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4646 stainless steel and the bottom bar is 359.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
90 to 100
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 34
3.8 to 4.9
Fatigue Strength, MPa 340
100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 500
220 to 230
Tensile Strength: Ultimate (UTS), MPa 750
340 to 350
Tensile Strength: Yield (Proof), MPa 430
250 to 280

Thermal Properties

Latent Heat of Fusion, J/g 290
530
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1390
600
Melting Onset (Solidus), °C 1340
570
Specific Heat Capacity, J/kg-K 480
910
Thermal Expansion, µm/m-K 17
21

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 2.8
8.0
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 160
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
12 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 460
450 to 540
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 27
37 to 38
Strength to Weight: Bending, points 24
42 to 43
Thermal Shock Resistance, points 16
16 to 17

Alloy Composition

Aluminum (Al), % 0
88.9 to 91
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 1.5 to 3.0
0 to 0.2
Iron (Fe), % 59 to 67.3
0 to 0.2
Magnesium (Mg), % 0
0.5 to 0.7
Manganese (Mn), % 10.5 to 12.5
0 to 0.1
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.5 to 4.5
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 1.0
8.5 to 9.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15