MakeItFrom.com
Menu (ESC)

EN 1.4646 Stainless Steel vs. 5082 Aluminum

EN 1.4646 stainless steel belongs to the iron alloys classification, while 5082 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4646 stainless steel and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 34
1.1
Fatigue Strength, MPa 340
110 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Shear Strength, MPa 500
210 to 230
Tensile Strength: Ultimate (UTS), MPa 750
380 to 400
Tensile Strength: Yield (Proof), MPa 430
300 to 340

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 910
180
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1340
560
Specific Heat Capacity, J/kg-K 480
910
Thermal Expansion, µm/m-K 17
24

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.9
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
4.0 to 4.3
Resilience: Unit (Modulus of Resilience), kJ/m3 460
670 to 870
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 27
39 to 41
Strength to Weight: Bending, points 24
43 to 45
Thermal Shock Resistance, points 16
17 to 18

Alloy Composition

Aluminum (Al), % 0
93.5 to 96
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 17 to 19
0 to 0.15
Copper (Cu), % 1.5 to 3.0
0 to 0.15
Iron (Fe), % 59 to 67.3
0 to 0.35
Magnesium (Mg), % 0
4.0 to 5.0
Manganese (Mn), % 10.5 to 12.5
0 to 0.15
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.5 to 4.5
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15