MakeItFrom.com
Menu (ESC)

EN 1.4646 Stainless Steel vs. 7020 Aluminum

EN 1.4646 stainless steel belongs to the iron alloys classification, while 7020 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4646 stainless steel and the bottom bar is 7020 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
45 to 100
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
8.4 to 14
Fatigue Strength, MPa 340
110 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 500
110 to 230
Tensile Strength: Ultimate (UTS), MPa 750
190 to 390
Tensile Strength: Yield (Proof), MPa 430
120 to 310

Thermal Properties

Latent Heat of Fusion, J/g 290
380
Maximum Temperature: Mechanical, °C 910
210
Melting Completion (Liquidus), °C 1390
650
Melting Onset (Solidus), °C 1340
610
Specific Heat Capacity, J/kg-K 480
880
Thermal Expansion, µm/m-K 17
23

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.7
2.9
Embodied Carbon, kg CO2/kg material 2.8
8.3
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 160
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
23 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 460
110 to 690
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 27
18 to 37
Strength to Weight: Bending, points 24
25 to 41
Thermal Shock Resistance, points 16
8.3 to 17

Alloy Composition

Aluminum (Al), % 0
91.2 to 94.8
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 17 to 19
0.1 to 0.35
Copper (Cu), % 1.5 to 3.0
0 to 0.2
Iron (Fe), % 59 to 67.3
0 to 0.4
Magnesium (Mg), % 0
1.0 to 1.4
Manganese (Mn), % 10.5 to 12.5
0.050 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.5 to 4.5
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0
0.080 to 0.25
Residuals, % 0
0 to 0.15