MakeItFrom.com
Menu (ESC)

EN 1.4646 Stainless Steel vs. A201.0 Aluminum

EN 1.4646 stainless steel belongs to the iron alloys classification, while A201.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4646 stainless steel and the bottom bar is A201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 34
4.7
Fatigue Strength, MPa 340
97
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 750
480
Tensile Strength: Yield (Proof), MPa 430
420

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1390
650
Melting Onset (Solidus), °C 1340
570
Specific Heat Capacity, J/kg-K 480
880
Thermal Expansion, µm/m-K 17
23

Otherwise Unclassified Properties

Base Metal Price, % relative 13
11
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 2.8
8.1
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 160
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
22
Resilience: Unit (Modulus of Resilience), kJ/m3 460
1250
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 27
44
Strength to Weight: Bending, points 24
45
Thermal Shock Resistance, points 16
21

Alloy Composition

Aluminum (Al), % 0
93.7 to 95.5
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 1.5 to 3.0
4.0 to 5.0
Iron (Fe), % 59 to 67.3
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 10.5 to 12.5
0.2 to 0.4
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.5 to 4.5
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0.15 to 0.35
Residuals, % 0
0 to 0.1