MakeItFrom.com
Menu (ESC)

EN 1.4646 Stainless Steel vs. EN AC-45000 Aluminum

EN 1.4646 stainless steel belongs to the iron alloys classification, while EN AC-45000 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4646 stainless steel and the bottom bar is EN AC-45000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
77
Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 34
1.1
Fatigue Strength, MPa 340
75
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 750
180
Tensile Strength: Yield (Proof), MPa 430
110

Thermal Properties

Latent Heat of Fusion, J/g 290
470
Maximum Temperature: Mechanical, °C 910
180
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1340
520
Specific Heat Capacity, J/kg-K 480
870
Thermal Expansion, µm/m-K 17
22

Otherwise Unclassified Properties

Base Metal Price, % relative 13
11
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 2.8
7.7
Embodied Energy, MJ/kg 41
140
Embodied Water, L/kg 160
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 460
80
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 27
17
Strength to Weight: Bending, points 24
24
Thermal Shock Resistance, points 16
8.0

Alloy Composition

Aluminum (Al), % 0
82.2 to 91.8
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 17 to 19
0 to 0.15
Copper (Cu), % 1.5 to 3.0
3.0 to 5.0
Iron (Fe), % 59 to 67.3
0 to 1.0
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0
0 to 0.55
Manganese (Mn), % 10.5 to 12.5
0.2 to 0.65
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.5 to 4.5
0 to 0.45
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 1.0
5.0 to 7.0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0
0 to 0.35