MakeItFrom.com
Menu (ESC)

EN 1.4646 Stainless Steel vs. Grade 20 Titanium

EN 1.4646 stainless steel belongs to the iron alloys classification, while grade 20 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4646 stainless steel and the bottom bar is grade 20 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
5.7 to 17
Fatigue Strength, MPa 340
550 to 630
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
47
Shear Strength, MPa 500
560 to 740
Tensile Strength: Ultimate (UTS), MPa 750
900 to 1270
Tensile Strength: Yield (Proof), MPa 430
850 to 1190

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 910
370
Melting Completion (Liquidus), °C 1390
1660
Melting Onset (Solidus), °C 1340
1600
Specific Heat Capacity, J/kg-K 480
520
Thermal Expansion, µm/m-K 17
9.6

Otherwise Unclassified Properties

Density, g/cm3 7.7
5.0
Embodied Carbon, kg CO2/kg material 2.8
52
Embodied Energy, MJ/kg 41
860
Embodied Water, L/kg 160
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
71 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 460
2940 to 5760
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
33
Strength to Weight: Axial, points 27
50 to 70
Strength to Weight: Bending, points 24
41 to 52
Thermal Shock Resistance, points 16
55 to 77

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.0
Carbon (C), % 0.020 to 0.1
0 to 0.050
Chromium (Cr), % 17 to 19
5.5 to 6.5
Copper (Cu), % 1.5 to 3.0
0
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 59 to 67.3
0 to 0.3
Manganese (Mn), % 10.5 to 12.5
0
Molybdenum (Mo), % 0 to 0.5
3.5 to 4.5
Nickel (Ni), % 3.5 to 4.5
0
Nitrogen (N), % 0.2 to 0.3
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
71 to 77
Vanadium (V), % 0
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4