MakeItFrom.com
Menu (ESC)

EN 1.4646 Stainless Steel vs. C40500 Penny Bronze

EN 1.4646 stainless steel belongs to the iron alloys classification, while C40500 penny bronze belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is EN 1.4646 stainless steel and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
3.0 to 49
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 500
210 to 310
Tensile Strength: Ultimate (UTS), MPa 750
270 to 540
Tensile Strength: Yield (Proof), MPa 430
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 910
190
Melting Completion (Liquidus), °C 1390
1060
Melting Onset (Solidus), °C 1340
1020
Specific Heat Capacity, J/kg-K 480
380
Thermal Expansion, µm/m-K 17
18

Otherwise Unclassified Properties

Base Metal Price, % relative 13
30
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 41
43
Embodied Water, L/kg 160
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 460
28 to 1200
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 27
8.5 to 17
Strength to Weight: Bending, points 24
10 to 17
Thermal Shock Resistance, points 16
9.5 to 19

Alloy Composition

Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 1.5 to 3.0
94 to 96
Iron (Fe), % 59 to 67.3
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 10.5 to 12.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 3.5 to 4.5
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.7 to 1.3
Zinc (Zn), % 0
2.1 to 5.3
Residuals, % 0
0 to 0.5