MakeItFrom.com
Menu (ESC)

EN 1.4652 Stainless Steel vs. AWS ER110S-1

Both EN 1.4652 stainless steel and AWS ER110S-1 are iron alloys. They have 47% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4652 stainless steel and the bottom bar is AWS ER110S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
17
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
73
Tensile Strength: Ultimate (UTS), MPa 880
870
Tensile Strength: Yield (Proof), MPa 490
740

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 9.8
47
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 34
4.0
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 6.4
1.8
Embodied Energy, MJ/kg 87
25
Embodied Water, L/kg 220
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 340
140
Resilience: Unit (Modulus of Resilience), kJ/m3 570
1460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 30
31
Strength to Weight: Bending, points 25
26
Thermal Diffusivity, mm2/s 2.6
13
Thermal Shock Resistance, points 20
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.020
0 to 0.090
Chromium (Cr), % 23 to 25
0 to 0.5
Copper (Cu), % 0.3 to 0.6
0 to 0.25
Iron (Fe), % 38.3 to 46.3
92.8 to 96.3
Manganese (Mn), % 2.0 to 4.0
1.4 to 1.8
Molybdenum (Mo), % 7.0 to 8.0
0.25 to 0.55
Nickel (Ni), % 21 to 23
1.9 to 2.6
Nitrogen (N), % 0.45 to 0.55
0
Phosphorus (P), % 0 to 0.030
0 to 0.010
Silicon (Si), % 0 to 0.5
0.2 to 0.55
Sulfur (S), % 0 to 0.0050
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.040
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5