MakeItFrom.com
Menu (ESC)

EN 1.4652 Stainless Steel vs. Titanium 4-4-2

EN 1.4652 stainless steel belongs to the iron alloys classification, while titanium 4-4-2 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4652 stainless steel and the bottom bar is titanium 4-4-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 45
10
Fatigue Strength, MPa 450
590 to 620
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 81
42
Shear Strength, MPa 610
690 to 750
Tensile Strength: Ultimate (UTS), MPa 880
1150 to 1250
Tensile Strength: Yield (Proof), MPa 490
1030 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1100
310
Melting Completion (Liquidus), °C 1460
1610
Melting Onset (Solidus), °C 1410
1560
Specific Heat Capacity, J/kg-K 460
540
Thermal Conductivity, W/m-K 9.8
6.7
Thermal Expansion, µm/m-K 15
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 34
39
Density, g/cm3 8.0
4.7
Embodied Carbon, kg CO2/kg material 6.4
30
Embodied Energy, MJ/kg 87
480
Embodied Water, L/kg 220
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 340
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 570
4700 to 5160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
34
Strength to Weight: Axial, points 30
68 to 74
Strength to Weight: Bending, points 25
52 to 55
Thermal Diffusivity, mm2/s 2.6
2.6
Thermal Shock Resistance, points 20
86 to 93

Alloy Composition

Aluminum (Al), % 0
3.0 to 5.0
Carbon (C), % 0 to 0.020
0 to 0.080
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0.3 to 0.6
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 38.3 to 46.3
0 to 0.2
Manganese (Mn), % 2.0 to 4.0
0
Molybdenum (Mo), % 7.0 to 8.0
3.0 to 5.0
Nickel (Ni), % 21 to 23
0
Nitrogen (N), % 0.45 to 0.55
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0.3 to 0.7
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
85.8 to 92.2
Residuals, % 0
0 to 0.4