MakeItFrom.com
Menu (ESC)

EN 1.4652 Stainless Steel vs. C92900 Bronze

EN 1.4652 stainless steel belongs to the iron alloys classification, while C92900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4652 stainless steel and the bottom bar is C92900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
84
Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 45
9.1
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 880
350
Tensile Strength: Yield (Proof), MPa 490
190

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1460
1030
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 460
370
Thermal Conductivity, W/m-K 9.8
58
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 34
35
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 6.4
3.8
Embodied Energy, MJ/kg 87
61
Embodied Water, L/kg 220
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 340
27
Resilience: Unit (Modulus of Resilience), kJ/m3 570
170
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 30
11
Strength to Weight: Bending, points 25
13
Thermal Diffusivity, mm2/s 2.6
18
Thermal Shock Resistance, points 20
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0.3 to 0.6
82 to 86
Iron (Fe), % 38.3 to 46.3
0 to 0.2
Lead (Pb), % 0
2.0 to 3.2
Manganese (Mn), % 2.0 to 4.0
0
Molybdenum (Mo), % 7.0 to 8.0
0
Nickel (Ni), % 21 to 23
2.8 to 4.0
Nitrogen (N), % 0.45 to 0.55
0
Phosphorus (P), % 0 to 0.030
0 to 1.5
Silicon (Si), % 0 to 0.5
0 to 0.0050
Sulfur (S), % 0 to 0.0050
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.7