MakeItFrom.com
Menu (ESC)

EN 1.4655 Stainless Steel vs. 5254 Aluminum

EN 1.4655 stainless steel belongs to the iron alloys classification, while 5254 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4655 stainless steel and the bottom bar is 5254 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 23 to 25
3.4 to 22
Fatigue Strength, MPa 320
110 to 160
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 460
150 to 200
Tensile Strength: Ultimate (UTS), MPa 720 to 730
240 to 350
Tensile Strength: Yield (Proof), MPa 450 to 480
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 1050
190
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1370
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
110

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.9
8.8
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 160
11 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 580
73 to 550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 26
25 to 37
Strength to Weight: Bending, points 23
32 to 41
Thermal Diffusivity, mm2/s 4.0
52
Thermal Shock Resistance, points 20
10 to 16

Alloy Composition

Aluminum (Al), % 0
94.4 to 96.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 24
0.15 to 0.35
Copper (Cu), % 1.0 to 3.0
0 to 0.050
Iron (Fe), % 63.6 to 73.4
0 to 0.45
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 0 to 2.0
0 to 0.010
Molybdenum (Mo), % 0.1 to 0.6
0
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0 to 0.45
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15