EN 1.4655 Stainless Steel vs. SAE-AISI 1211 Steel
Both EN 1.4655 stainless steel and SAE-AISI 1211 steel are iron alloys. They have 69% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is EN 1.4655 stainless steel and the bottom bar is SAE-AISI 1211 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 23 to 25 | |
11 to 29 |
Fatigue Strength, MPa | 320 | |
200 to 280 |
Poisson's Ratio | 0.27 | |
0.29 |
Shear Modulus, GPa | 78 | |
73 |
Shear Strength, MPa | 460 | |
280 to 350 |
Tensile Strength: Ultimate (UTS), MPa | 720 to 730 | |
430 to 580 |
Tensile Strength: Yield (Proof), MPa | 450 to 480 | |
260 to 460 |
Thermal Properties
Latent Heat of Fusion, J/g | 290 | |
250 |
Maximum Temperature: Mechanical, °C | 1050 | |
400 |
Melting Completion (Liquidus), °C | 1420 | |
1460 |
Melting Onset (Solidus), °C | 1370 | |
1420 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Conductivity, W/m-K | 15 | |
52 |
Thermal Expansion, µm/m-K | 13 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.2 | |
7.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.5 | |
8.0 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 15 | |
1.8 |
Density, g/cm3 | 7.7 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 2.9 | |
1.4 |
Embodied Energy, MJ/kg | 41 | |
18 |
Embodied Water, L/kg | 160 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 150 to 160 | |
61 to 110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 510 to 580 | |
180 to 550 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 26 | |
15 to 21 |
Strength to Weight: Bending, points | 23 | |
16 to 20 |
Thermal Diffusivity, mm2/s | 4.0 | |
14 |
Thermal Shock Resistance, points | 20 | |
14 to 18 |
Alloy Composition
Carbon (C), % | 0 to 0.030 | |
0 to 0.13 |
Chromium (Cr), % | 22 to 24 | |
0 |
Copper (Cu), % | 1.0 to 3.0 | |
0 |
Iron (Fe), % | 63.6 to 73.4 | |
98.7 to 99.23 |
Manganese (Mn), % | 0 to 2.0 | |
0.6 to 0.9 |
Molybdenum (Mo), % | 0.1 to 0.6 | |
0 |
Nickel (Ni), % | 3.5 to 5.5 | |
0 |
Nitrogen (N), % | 0.050 to 0.2 | |
0 |
Phosphorus (P), % | 0 to 0.035 | |
0.070 to 0.12 |
Silicon (Si), % | 0 to 1.0 | |
0 |
Sulfur (S), % | 0 to 0.015 | |
0.1 to 0.15 |