MakeItFrom.com
Menu (ESC)

EN 1.4655 Stainless Steel vs. C83300 Brass

EN 1.4655 stainless steel belongs to the iron alloys classification, while C83300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4655 stainless steel and the bottom bar is C83300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23 to 25
35
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 720 to 730
220
Tensile Strength: Yield (Proof), MPa 450 to 480
69

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 1050
180
Melting Completion (Liquidus), °C 1420
1060
Melting Onset (Solidus), °C 1370
1030
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
160
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
33

Otherwise Unclassified Properties

Base Metal Price, % relative 15
30
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 41
44
Embodied Water, L/kg 160
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 160
60
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 580
21
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 26
6.9
Strength to Weight: Bending, points 23
9.2
Thermal Diffusivity, mm2/s 4.0
48
Thermal Shock Resistance, points 20
7.9

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 1.0 to 3.0
92 to 94
Iron (Fe), % 63.6 to 73.4
0
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0.1 to 0.6
0
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
1.0 to 2.0
Zinc (Zn), % 0
2.0 to 6.0
Residuals, % 0
0 to 0.7