MakeItFrom.com
Menu (ESC)

EN 1.4655 Stainless Steel vs. S33550 Stainless Steel

Both EN 1.4655 stainless steel and S33550 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4655 stainless steel and the bottom bar is S33550 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23 to 25
40
Fatigue Strength, MPa 320
270
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 78
79
Shear Strength, MPa 460
470
Tensile Strength: Ultimate (UTS), MPa 720 to 730
680
Tensile Strength: Yield (Proof), MPa 450 to 480
310

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 440
470
Maximum Temperature: Mechanical, °C 1050
1100
Melting Completion (Liquidus), °C 1420
1400
Melting Onset (Solidus), °C 1370
1360
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 15
24
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.9
4.3
Embodied Energy, MJ/kg 41
61
Embodied Water, L/kg 160
190

Common Calculations

PREN (Pitting Resistance) 26
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 160
220
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 580
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 23
22
Thermal Diffusivity, mm2/s 4.0
3.9
Thermal Shock Resistance, points 20
15

Alloy Composition

Carbon (C), % 0 to 0.030
0.040 to 0.1
Cerium (Ce), % 0
0.025 to 0.070
Chromium (Cr), % 22 to 24
25 to 28
Copper (Cu), % 1.0 to 3.0
0
Iron (Fe), % 63.6 to 73.4
48.8 to 58.2
Lanthanum (La), % 0
0.025 to 0.070
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 0.1 to 0.6
0
Nickel (Ni), % 3.5 to 5.5
16.5 to 20
Niobium (Nb), % 0
0.050 to 0.15
Nitrogen (N), % 0.050 to 0.2
0.18 to 0.25
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030